Искусственное старение

Искусственное старение

Старение металла, виды, искусственное, естественное, как происходит и от чего зависит

пер.Каштановый 8/14 51100 пгт.Магдалиновка Nikolaenko Dmitrij Старение металла, виды, искусственное, естественное, как происходит и от чего зависит Старение металла, виды, искусственное, естественное, как происходит и от чего зависит

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

(3 голоса, в среднем: 4.7 из 5)

Старение металлов достаточно медленный процесс, в результате которого происходят механические изменения, изменение физических и химических свойств.

На старение металлов оказывает влияние целый ряд факторов, среди которых:

  • тепловое движение атомов и молекул;
  • механическое воздействие (различные нагрузки на сгибание/сдавливание/разрыв и т.д.);
  • световое излучение (особенно невидимые человеку излучения);
  • магнитное поле (намагничивание/размагничивание) и др.

Суть старения металла заключается в том, что происходит процесс равновесного состояния, при котором свойства металла отклоняются от нормы. А именно, материал может стать более мягким, хрупким, менее упругим и т.д.

Типы старения металлов

Различают естественное старение и искусственное.

Искусственное старение металла это когда металл, быстро приобретает тот состав и те свойства, которые необходимы. Достигается искусственное старение путем воздействия термообработкой и пластическим деформированием. Например, при получении дюралюминия его подвергают на несколько часов искусственному старению.

Естественное старение происходит соответственно естественным путем и не требует создания дополнительных условий. Хотя более интенсивно процесс идет при большой длительности по времени и температуре, приближенной к 20°С.

Применение процессов старения в металлургии и металлообработке

Старение в качестве дополнительной обработки применяется как заключительная операция. Используется к некоторым металлам и сплавам, у которых пресыщенный твердый раствор может выделять избыточный компонент и распадаться самопроизвольно с течением времени. Особенно актуален метод для подготовки материалов при создании отдельных узлов и деталей, для которых описанный выше процесс будет критичен.

После старения у металла возрастают показатели твердости с прочности, но при этом снижаются вязкость с пластичностью, однако важно отметить, что эти значения сохраняются на протяжении всего срока службы материала.

Старение стали выполняют для изменения внутренней структуры и применяется после закалки. Так, полученный твердый раствор феррита пресыщенный азотом и углеродом при нагревании распадается. В зависимости от объема включений углерода в «стареющем» материале, внутренняя структура приобретает формы:

  • кубическую;
  • сферическую;
  • дискообразную (в виде тонких пластинок);
  • игольчатую.

Термообработка (искусственное старение металла) применяется к тем сплавам, в которых растворяемость одного элемента в твердом состоянии значительно снижена. Это свойство ярко проявляется при снижении температуры.

В сталях с низким содержанием углерода, не выше 0,05%, при искусственном старении, распадается пресыщенный твердый альфа раствор. Как результат выделяются избыточные фазы. После такой обработки снижается пластичность, но явно увеличивается твердость и прочность. А именно эти качества часто требуются в конечном продукте металлургии.

Модель Орована

На показанном рисунке продемонстрирована модель Орована, наглядно иллюстрирующая перемещение дислокаций. Получить максимальный эффект можно при естественном старении, Однако на это дело потребуется большое количество времени, что не выгодно и не практично в случае с постоянным и объемным производством (это ведь не вино/коньяк в бочках отстаиватьJ). Поэтому существуют искусственные методы по ускорению этих естественных процессов (жаль такого не провернуть с вискарикомJ). Но стоит отметить, что при искусственном «старении» прочностные характеристики материала будут заметно снижены.

Твердость в зависимости от времени старения

Показанный график наглядно демонстрирует описанную выше проблему – сокращение времени старения металла не увеличивает его прочностных характеристик.

Течение процесса старения во многом зависит от углерода и азота. Особенно это заметно в малоуглеродистых сталях. Азот с уменьшением температуры начинает хуже растворятся в альфа железе. Например, при температуре 590°С растворенного азота содержится 0,1%, но уже при 20°С его содержание снижается до 0,004%. При старении альфа раствор выделяет нитриды. Поэтому влияние азота менее выражено по сравнению с тем же углеродом при температурном воздействии.

При увеличении углерода в сталях увеличивается эффект изменения структуры, получаемый при термическом воздействии. Объем углерода, максимум которого может раствориться в альфа железе составляет 0,02-0,04%. При таком содержании закаленное изделие, подвергнутое естественному старению обладает твердостью в полтора раза выше чем после отжига.

Старение – это основной способ увеличения прочности жаропрочных сплавов (с высоким содержанием никеля). В эту же группу относятся сплавы на основе алюминия, меди, магния. Кроме того, измененная структура вышеперечисленных металлов и сплавов придает им коэрцитивную силу.

Алюминиевые и алюминисто-медные сплавы подвергаются деструкции при различных температурах (свыше 100°С) из-за различия в температуре распада структуры разных металлов. Так выделяют низкотемпературное и высокотемпературное изменение структуры.

Распад твердого раствора проходит по двум путям. В первом случае это образование и рост частиц фазы идет по всему объему. Во втором случае распад прерывистый (ячеистый). Во время него ячейки растут колониями. У колоний структура ячеистая, а рост идет от границы зерна и движется во внутрь, уменьшая размер.

Механическое и термическое старение

Существует два вида старения металла: термическое и механическое. Рассмотрим каждый из них более подробно.

Термическое старение

Фаза упрочняющая металл во время термического воздействия происходит в точке максимума. Здесь проходит метастабильный промежуток раствора в зоне Гинье-Престона. Такой вид упрочнения металлов и сплавов принято называть дисперсионным.

Зависимость прочности от времени и температуры старения

При более длительной выдержке начинается перестаривание, то есть снижение прочностных характеристик. На это влияют:

  • коагуляция;
  • частичная замена частиц некогерентыми.

Виды термического старения металла:

  • Двухступенчатое – закалка, затем выдержка при температуре замещения, а потом выдерживание с повышенной температурой для получения однородности твердого раствора.
  • Закалочное – закалка и одна фаза выдержки с естественным охлаждением.
  • Естественное – для алюминиевых сплавов.
  • Искусственное – для сплавов из цветных металлов с нагревом до температуры выше той, которая используется для естественной деструкции.
  • Стабилизационное – высокая температура старения и длительный срок выдержки помогают сохранить размеры и свойства детали.

Механическое старение металла

Деструкция стали при помощи деформирующих усилий происходит в диапазоне температур ниже процесса рекристаллизации. Обусловлено это образованием и движением дислокаций. При холодной пластической деформации увеличивает плотность дислокаций, которые далее еще больше увеличиваются при увеличении нагрузок.

Изменяющиеся механические свойства металла вызывает движение атомов углерода и азота к дислокациям, которые размещены в альфа растворе. Достигнув дислокаций атомы образуют облака (атмосферы Котрелла). Данные скопления препятствуют движению дислокаций, благодаря чему происходит изменение свойств. Появляются присущие состаренным термообработкой деталям свойства.

Если на эффект старения деформированием сильно влияют азот, никель и медь, то с добавками ванадия, титана и ниобия данный эффект полностью пропадает. Поэтому рекомендуется использовать сталь с содержанием алюминия 0,02-0,07%.

Рекомендуемые режимы для проведения старения

Термическая обработка:

  • для сталей с высоким содержанием углерода: температура порядка 130°С-150°С, время выдержки порядка 25-30 часов;
  • для сплавов из цветных металлов: температура порядка 250°С, время выдержки порядка 1 часа.

Пластическая обработка:

  • для естественного процесса: температура порядка 20°С;
  • для искусственного протекания процесса: температура порядка 250°С, время выдержки порядка 1 часа.

Температура нагрева и время выдержки подбирается индивидуально к каждой марке металла и к сплаву в зависимости от их состава

мтомд.инфо

Отпуск применяется к сплавам, которые подвергнуты закалке с полиморфным превращением. К материалам, подвергнутым закалке без полиморфного превращения, применяется старение.

Закалка без полиморфного превращения – термическая обработка, фиксирующая при более низкой температуре состояние, свойственное сплаву при более высоких температурах (пересыщенный твердый раствор).

Отпуск стали. Температура отпуска стали. Режимы отпуска стали. Отпускная хрупкость. Улучшение термическая обработка.
Термомеханическая обработка стали. Высокотемпературная термомеханическая обработка. Низкотемпературная термомеханическая обработка.

Старение – термическая обработка, при которой главным процессом является распад пересыщенного твердого раствора. В результате старения происходит изменение свойств закаленных сплавов. В отличие от отпуска, после старения увеличиваются прочность и твердость, и уменьшается пластичность.

Старение сплавов связано с переменной растворимостью избыточной фазы, а упрочнение при старении происходит в результате дисперсионных выделений при распаде пересыщенного твердого раствора и возникающих при этом внутренних напряжений.

Способы закалки. Способы закалки стали. Виды закалки стали. Технология закалки стали. Режимы закалки сталей.
Поверхностная закалка стали. Закалка ТВЧ. Закалка стали ТВЧ. Установка для закалки ТВЧ. Закалка токами высокой частоты.
Закалка стали. Закалка металла. Виды закалки. Температура закалки. Закаливаемость. Прокаливаемость. Критический диаметр.

В стареющих сплавах выделения из твердых растворов встречаются в следующих основных формах:

  • тонкопластинчатой (дискообразной);
  • равноосной (сферической или кубической);
  • игольчатой.

Форма выделений определяется конкурирующими факторами: поверхностной энергией и энергией упругой деформации, стремящимися к минимуму. Поверхностная энергия минимальна для равноосных выделений. Энергия упругих искажений минимальна для выделений в виде тонких пластин.

Основное назначение старения – повышение прочности и стабилизация свойств.

Различают старение естественное, искусственное и после пластической деформации.

Естественным старением называется самопроизвольное повышение прочности и уменьшение пластичности закаленного сплава, происходящее в процессе его выдержки при нормальной температуре.

Нагрев сплава увеличивает подвижность атомов, что ускоряет процесс. Повышение прочности в процессе выдержки при повышенных температурах называется искусственным старением.

Предел прочности, предел текучести и твердость сплава с увеличением продолжительности старения возрастают, достигают максимума и затем снижаются (явление перестаривания). При естественном старении перестаривания не происходит. С повышением температуры стадия перестаривания достигается раньше.

Если закаленный сплав, имеющий структуру пересыщенного твердого раствора, подвергнуть пластической деформации, то также ускоряются процессы, протекающие при старении – это деформационное старение.

Химико-термическая обработка. Химико-термическая обработка стали. Химико-термическая обработка металла.
Термическая обработка металла. Термическая обработка металлов и сплавов. Виды термической обработки металлов. Виды термообработки.

Старение охватывает все процессы, происходящие в пересыщенном твердом растворе: процессы, подготавливающие выделение, и сами процессы выделения.

Для практики большое значение имеет инкубационный период – время, в течение которого в закаленном сплаве (см. Закалка стали. Виды закалки. Закаливаемость.) совершаются подготовительные процессы, когда сохраняется высокая пластичность. Это позволяет проводить холодную деформацию после закалки.

Если при старении происходят только процессы выделения, то явление называется дисперсионным твердением.

Старение является основным способом упрочнения алюминиевых и медных сплавов, а также многих жаропрочных сплавов.

Старение сплавов. Закалочное и деформационное старение. Назначение, типы, виды режимов, структура и получаемые свойства

В соответствии с классификацией, принятой в странах СНГ, старение -это вид термообработки, при которой в сплаве, подвергнутом закалке без полиморфного превращения, главным процессом является распад пересыщенного твердого раствора. Это определение характеризует не природу явления, а вид термообработки.

В технической литературе часто встречается такое определение старения металлов: изменение механических, физических и химических свойств металлов и сплавов в процессе вылеживания при комнатной температуре (естественное старение) или при нагреве (искусственное старение), а также при выдержке и эксплуатации при разных температурах после холодной пластической деформации (деформационное старение), т.е. распад пересыщенного твердого раствора при определенных условиях.

Старение может приводить к негативным изменениям свойств металлов или сплавов (например, после сварки металла (сварной шов и околошовная зона), который в определенной мере являлся пересыщенным твердым раствором, и после нагрева происходят процессы старения — охрупчивания). Положительное влияние старения — когда производится специальная термообработка с целью повышения прочностных и др. свойств за счет закалки + старения.

Старение обусловлено термодинамической неравновесностью исходного структурного состояния в условиях достаточной диффузионной подвижности атомов. В чистых металлах неравновесность структурного состояния состоит в избытке (для низких температур) концентраций вакансий, дислокаций и др. дефектов кристаллической решетки, а в сплавах и металлах технической чистоты — в сохранении при низких температурах пересыщенного твердого раствора.

Старение используется в качестве заключительной операции термической обработки для специального класса конструкционных материалов — стареющих или дисперсионно-твердеющих сплавов, для чего используется нагрев до температур, при которых из раствора выделяется избыточная фаза и металл упрочняется. В промышленности используется много сплавов на основе алюминия, магния, меди, никеля и др., которые упрочняются при таком виде ТО. Старение применимо к любому сплаву, в котором имеется пересыщенный твердый раствор, который стремится к самопроизвольному распаду и выделению из него избыточного компонента. Процесс выделения является типичным диффузионным превращением, ускоряющимся с ростом температуры.

Структурные изменения при старении металлов (как и при отпуске) происходят в несколько стадий:

1 стадия:в пересыщенном твердом растворе образуются скопления атомов легирующих элементов, которые называются кластерами.

В первой части методического пособия для характеристики однородности твердого раствора дано краткое понятие кластерам и состояниям границ между такими устойчивыми областями химической неоднородности и матричным раствором. Кластер — при рассмотрении процессов структурообразования в металлах кластером называют скопление примесных (растворенных) элементов в твердом растворе или комплексы (объединения) точечных дефектов, например, вакансий в кристаллической решетке. Вакансионный кластер образуется в результате столкновений вакансий и может расти за счет присоединения новых вакансий вплоть до возникновения вакансионных пор.

Если атомные размеры компонентов раствора различны, то такие кластеры могут вызывать упругие напряжения в окружающей среде. Между кластером и матрицей, по сути дела, нет четкой границы раздела, так как их структуры изоморфны. Поэтому было введено понятие когерентной межфазной границы (поверхности), под которой подразумевается некая атомная поверхность, на которой расположение атомов и расстояние между ними близки для обеих кристаллических структур без учета химической природы атомов. Когерентная граница — межфазная граница, на которой атомные плоскости одной фазы переходят, не прерываясь, в другую фазу, так, что атомы на границе принадлежат одновременно кристаллическим решеткам двух фаз.

В однофазном материале примером когерентной границы является плоскость двойникования между двумя кристаллами — двойниками.

При увеличении когерентной поверхности раздела фаз энергия искажений увеличивается до определенного критического предела, при котором возникают межфазные дислокации. Такая межфазная граница уже не является полностью когерентной, хотя отдельные ее участки между дислокациями могут быть когерентными. Такие границы называют полукогерентными. Если
расстояние между структурными дислокациями на границ раздела фаз мало, то такую границу называют некогерентной. Определить тип границ весьма сложно, но возможно электронной и автоионной микроскопией, либо косвенно рентгеноструктурным методом по изменению уровня искажений кристаллической решетки или методом внутреннего трения.

На первой стадии распада пересыщенного твердого раствора размер кластеров настолько мал, что он не обнаруживается стуктурными методами. С увеличением времени размеры кластеров растут и вызывают дифракционные эффекты на рентгенограммах. Кластеры, обнаруживаемые структурными методами, называют зонами Гинье–Престона (французский и английский ученые, одновременно обнаружившие это явление в 1938 г.).

Для зон Гинье–Престона (размер тонких пластинчатых дискообразных образований толщиной в несколько атомных слоев (0,5-1 нм) и длиной 1-10 нм) характерно гомогенное зарождение и они равномерно распределены в зернах твердого раствора. Зоны Гинье-Престона часто называют предвыделениями, но их можно рассматривать как полностью когерентные выделения.

2 стадияраспада пересыщенного твердого раствора при старении – собственно выделение частиц вторичной фазы. Эта стадия может идти через промежуточные стадии (т.е. a®Г-П®b1 ®b).

3 стадиястарения – коагуляция выделившихся частиц вторичной фазы. Коагуляция выделений во время старения происходит вследствие переноса вещества через матричный раствор (из-за градиента концентраций) при растворении более мелких и росте более крупных частиц выделений.

Коагуляцию частиц можно наблюдать на всех стадиях распада, но наибольший интерес она представляет на 3-й стадии, т.к. является единственным структурным изменением стабильной вторичной фазы.

Процесс упрочнения металлов при старении проходит через максимум(рис. 3.1).Наибольшее упрочнение происходит на стадии возникновения в растворе зон Гинье–Престона и метастабильной промежуточной
фазы.

Такое упрочнение называют дисперсионным твердением.Упрочнение металлов и сплавов при старении или отпуске после закалки с образованием пересыщенного твердого раствора является распространенной операцией с целью повышения прочности. Разупрочнение при дальнейшем увеличении
выдержки в процессе старения называется перестариванием,и оно обусловлено действием двух факторов:

1) коагуляцией выделений метастабильной фазы;

2) частичной заменой когерентных частиц метастабильной фазы на некогерентные частицы стабильной фазы и их коагуляцией.

Рисунок 3.1 – Схема зависимости прочностных свойств от
продолжительности старения при разных температурах (Т1 < Т2 < Т3) (Новиков И.И.)

Рассмотрим типы старения:

· двухступенчатое старение: после закалки вначале старение проводится при одной температуре, а затем при другой, обычно более высокой для достижения более высокой плотности и однородности распределения выделений в твердом растворе;

· деформационное старение: протекает после или при пластической деформации в результате взаимодействия примесных атомов с дефектами кристаллической решетки, которые образовались в процессе деформации;

· закалочное старение — процесс старения в металлах, подвергнутых закалке из однофазного состояния с недостаточно интенсивным
охлаждением;

· естественное старение — процесс распада пересыщенных твердых растворов, в которых диффузионная подвижность атомов при низких температурах достаточна для образования кластеров и зон Гинье–Престона. К таким материалам относятся сплавы на основе алюминия и некоторые другие. Используют термин для процессов, протекающих при комнатной температуре;

· искусственное старение- процесс, который протекает при температурах выше комнатной (обычно проводят при 250°С, 1 час). Этот вид старения является основной упрочняющей термической обработкой сплавов на основе цветных металлов;

· магнитное старение- заключающееся в изменении магнитных свойств ферромагнетика в течение времени. Магнитное старение может быть вызвано изменением доменной структуры ферромагнетика (обратимое старение), или изменением его кристаллической структуры (необратимое старение) под воздействием магнитных полей, температурных, механических колебаний и других воздействий;

· полевое старение — процесс, который происходит в тонких металлических и аморфных пленках и проявляется в изменении их структуры и физических свойств при наложении на систему сильных магнитных или электрических полей;

· стабилизирующее старение- процесс, который происходит при повышенных температурах и при больших выдержках с целью стабилизации свойств и размеров изделий;

· старение под напряжением -термическая обработка, в процессе которой под воздействием внешних нагрузок напряжения в металле изменяют форму, ориентацию и взаимное расположение выделений вторичной фазы. Такой вид старения применяется для повышения пределов пропорциональности, упругости и релаксационной стойкости сплавов. Часто это используется при изготовлении пружин и других упругих элементов, например, из бериллиевой бронзы.

В стареющих сплавах форма выделяющихся частиц вторичной фазы может быть:

— тонкопластинчатой (обычно дискообразной);

— равноосной (обычно сферической или кубической);

— игольчатой.

Стремление пересыщенного твердого раствора к получению минимума энергии упругих искажений влияет не только на форму выделений, но и на взаимное расположение частиц.

Под термином “модулированная структура” в технической литературе понимается система когерентных выделений в твердом растворе размером от единиц до десятков нанометров с той или иной степенью регулярности в их расположении. Расстояние между выделениями называют периодом
модуляции.

Процесс распада твердого раствора при непрерывном понижении свободной энергии системы, не требующий активационного образования зародышей новой фазы, называют спинодальным (непрерывным), т.к. он реализуется внутри области фазовой диаграммы, ограниченной спинодалью. Спинодаль считают границей абсолютной неустойчивости твердого раствора. Приспинодальном распаде составы выделяющихся фаз изменяются непрерывным образом, а сам распад осуществляется одновременно по всему объему сплава. Для подавления спинодального распада, согласно данным ряда работ, требуются очень большие скорости охлаждения (время охлаждения 10-3 с), которые трудно достичь в реальных условиях.

При непрерывном распаде в пересыщенном твердом растворе образуются и растут отдельные выделения частиц вторичной фазы. При этом происходит непрерывное уменьшение концентрации легирующих элементов по всему объему исходных зерен — это является характерной чертой этого процесса. По микроструктурным признакам непрерывный распад твердого раствора при старении подразделяется на равномерный (или общий) и локализованный. При равномерном распаде выделения образуются однородно по всему объему зерен (зарождение может быть гомогенным или гетерогенным). А при локализованном распаде выделения преимущественно образуются у границ зерен и субзерен, в полосах скольжения и т.д. (зарождение всегда гетерогенное).

Считается, что новая фаза в пересыщенном твердом растворе
зарождается:

— гомогенно — без участия дефектов кристаллического строения (дислокаций, дефектов упаковки);

— гетерогенно — при наличии дефектов решетки. А так как дефекты типа вакансий, являющиеся основными агентами при возникновении кластеров или областей ближнего порядка, присутствуют в металле при температурах даже выше кривой растворимости, то можно считать, что зарождение должно быть всегда гетерогенным. Но для упрощения классификации вакансии не вошли в число дефектов, поэтому, когда определяется механизм распада, подразумевается механизм образования зародышей вторичной фазы.

Прерывистый (ячеистый) распад.При этом распаде в зернах исходного раствора зарождаются и растут ячейки (колонии) двухфазной смеси a1+ b, часто имеющие перлитное строение. Возможен локализованный распад пересыщенного твердого раствора по схеме, когда концентрация исходного раствора при старении остается до определенного времени неизменной, а при определенных условиях на границе ячейки, в узкой зоне, происходит резкий скачек концентрации от исходного до a1 внутри ячейки.

Поскольку при двухфазном распаде параметр решетки твердого раствора меняется скачкообразно, то такой тип распада еще называется прерывистым, в отличие от непрерывного, при котором параметр матрицы (ее состав) при старении меняется непрерывно.

Изменение свойств сплавов, протекающее во времени после холодной пластической деформации, называют статическим деформационным
старением.

Если процесс деформационного старения происходит во время деформации, то его называют динамическим деформационным старением.

Отличие деформационного старения от обычного (или закалочного) обусловлено тем, что деформационное идет при наличии в металле значительного количества новых (свежих, образовавшихся) дислокаций, способных взаимодействовать с атомами растворенного компонента в условиях достаточной диффузионной подвижности этих атомов.

Эффекты упрочнения и охрупчивания сплавов при деформационном старении связаны с резким уменьшением подвижности дислокаций.

Различают следующие стадии деформационного старения(применительно к системам a-Fe- C,N):

1. увеличение количества атомов углерода или азота на дислокациях, приводящее к уменьшению расчетных расстояний между точками закрепления дислокаций (на этой стадии старения нет возврата — явления, при котором в сплаве, нагретом до некоторой температуры Т2, которая выше первоначальной Т1, не происходит растворения продуктов выделения, т.е. промежуточной (метастабильной) фазы);

2. увеличение количества атомов углерода или азота на дислокациях, сопровождающееся дальнейшим упрочнением сплава без изменения расстояния между точками закрепления дислокаций и без изменения длины площадки текучести (стадия характеризуется эффектом возврата — это свидетельствует о том, что сегрегации развиваются за счет размещения атомов примесей в позициях с меньшей энергией связи);

3. образование устойчивой фазы выделения (характеризуется резким повышением коэффициента упрочнения, охрупчиванием сплава и уменьшением эффекта возврата).

Деформационное старение развивается, если концентрация C+N существенно выше 10-4% (по массе). При значительной концентрации примеси и небольшой степени деформации происходит совмещение деформационного старения с закалочным старением. При этом, чем ниже температура старения, тем больше доля закалочного старения.

Деформационное старение может быть естественным, т.е. происходить после деформации при температуре окружающего воздуха 20°С.

Деформационное старение может быть искусственным, когда после деформации ≈10% металл подвергается нагреву (чаще всего такую операцию проводят при нагреве до 250°С в течение одного часа).

Для процесса деформационного старения характерными величинами являются параметры предела текучести и длины площадки текучести, которые отличаются высокой чувствительностью к количеству и подвижности дислокаций, размерам частиц вторичной фазы и расстоянию между ними, а, кроме того, эти характеристики коррелируют и со способностью стали к вытяжке при штамповке. Для оценки склонности сталей к деформационному старению используют характеристики разрушения — порог хладноломкости (Т50) и ударную вязкость (KCU; KCV и др.), сравнивая их значения в исходном состоянии и после искусственного старения.

Существенное различие деформационного и закалочного старения обнаруживается в изменениях коэрцитивной силы, при дефомационном старении коэрцитивная сила изменяется незначительно.

Эффект деформационного старения практически не проявляется при добавлении в металл элементов, связывающих углерод и азот (например, ниобий, ванадий, титан и др.) в частицы вторичной фазы. Но выделения этих частиц упрочняет металл и затрудняет штамповку. Наиболее часто используется
введение в металл для глубокой штамповки алюминия, связывающего азот, что способствует повышению пластичности и образованию при холодной прокатке благоприятной текстуры.

В промышленности применяют различные способы для улучшения штампуемости листового металла, например, удаление из жидкого металла при плавке вредных примесей (азот, углерод), либо удаление из твердого металла этих элементов при нагреве в вакууме (такая операция является одной из разновидностей ХТО). В основе этой обработки лежит диффузионный процесс перемещения атомов вредных веществ из сердцевины к поверхности. Часто такие процессы проводят в вакууме или в защитной среде (например, обезуглероживание трансформаторной стали в среде водорода).

Искусственное старение

Главная / Теория термической обработки металлов / Старение и отпуск / Старение / Искусственное старение 23 сентября 2011

В зависимости от режима, структурных изменений и получаемого комплекса свойств искусственное старение можно подразделить на полное, неполное, перестаривание и стабилизирующее старение (соответствующие режимы и свойства приведены в таблице Режимы старения и механические свойства состаренных сплавов на разной основе для литейного алюминиевого сплава AЛ9).

Полное искусственное старение проводят при такой температуре и продолжительности, которые обеспечивают достижение максимальной прочности.

Неполное искусственное старение — это старение с более короткой выдержкой или при более низкой температуре, чем полное с целью повысить прочность при сохранении достаточной пластичности. Режимы неполного старения соответствуют восходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения. Некоторая потеря возможного прироста прочности компенсируется меньшим снижением пластичности.

Перестаривание — это старение при более высокой температуре или большей выдержке, чем полное, с целью получить сочетание повышенных прочности, пластичности, коррозионной стойкости, электропроводности и других свойств. Режимы перестаривания соответствуют нисходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения.

По сравнению с неполным старением перестаривание при той же прочности обеспечивает большую степень распада твердого раствора и коагуляцию выделений, что часто позволяет достигнуть требуемого комплекса разнообразных свойств.

Стабилизирующее старение — это разновидность перестаривания, целью которого является стабилизация свойств и размеров изделия.

Жаропрочные сплавы, предназначенные для длительной службы, обычно подвергают старению при температуре выше рабочей. В противном случае при эксплуатации изделия в нем будут активно протекать структурные изменения, приводящие к разупрочнению и нестабильности свойств изделия. Очень часто термическую обработку жаропрочных сплавов проводят в режиме перестаривания.
Выбор режима старения следует проводить с учетом условий закалки. С повышением температуры нагрева под закалку из однофазной области (выше Т0 в сплаве С0 на рисунке Схема к объяснению закалки без полиморфного превращения) старение ускоряется из-за повышения концентрации закалочных вакансий, которая входит в предэкспоненциальный множитель А в выражении для скорости зарождения новой фазы.

Таким образом, С-кривые распада раствора на рисунке С-кривые образования зон ГП с повышением температуры закалки сдвигаются влево, причем этот сдвиг больше в низкотемпературной области, где роль закалочных вакансий особенно велика.

Некоторые сплавы подвергают старению без специального нагрева под закалку. В таких случаях пересыщение раствора достигается ускоренным охлаждением с температуры конца затвердевания отливки или горячей обработки давлением.

Упрочнение здесь не достигает максимально возможного для данного сплава из-за меньшей пересыщенности твердого раствора, но экономическая эффективность (исключение операции закалки) делает указанное старение целесообразным для ряда деталей. Для отдельных сплавов, например для сплава MЛ12 системы Mg — Zn — Zr, старение отливок без специального нагрева под закалку является основным способом термической обработки.
Скорость охлаждения после старения не влияет на свойства сплава. Обычно с температуры старения изделия охлаждают на воздухе.

«Теория термической обработки металлов»,
И.И.Новиков

Явление возврата после старения было открыто на дуралюмине. Если естественно состаренный дуралюмин нагреть до температуры примерно 250 °С, выдержать 20 — 60 с и быстро охладить, то его свойства возвращаются к значениям, характерным для свежезакаленного состояния.  Сущность явления возврата состоит в том, что зоны ГП, возникшие при естественном старении, во время нагрева сплава растворяются, метастабильные…

Выбор температуры и продолжительности старения После предварительной оценки температурного уровня старения по соотношению или по аналогии с другими сплавами на базе того же металла экспериментально отрабатывают режим старения, строя графики, подобные рисуноки Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения. Как известно, старение подразделяют на естественное, происходящее при комнатной температуре, и искусственное,…

Старение с выдержкой вначале при одной, а затем при другой температуре называют ступенчатым. Как правило, температуру первой ступени выбирают ниже, чем второй. Основная цель двухступенчатого (двойного) старения — создать большое число центров выделений на низкотемпературной ступени, когда пересыщенность твердого раствора велика (на рисунке Размер выделений степень пересыщенности C0/C1 растет с понижением температуры Т1), а затем…

Рассмотрим практически важный случай сложной роли естественного старения на примере сплавов системы Al — Mg — Si, находящихся на квазибинарном разрезе Al — Mg2Si или недалеко от него (сплавы типа авиаль). В этих сплавах при естественном старении образуются игольчатые зоны ГП, обогащенные магнием и кремнием, а при искусственном (170 °С) — метастабильная β´-фаза (смотрите таблицу…

С ролью предстарения тесно связан вопрос о роли скорости нагрева при одноступенчатом старении. Обычно на скорость нагрева до температуры старения не обращают внимания. Однако начальные стадии распада при замедленном нагреве могут влиять на свойства состаренного сплава. Так, например, замедленный нагрев до температуры старения некоторых алюминиевых сплавов позволяет несколько повысить их прочность. Режимы старения и механические…

Официальные и неофициальные документы, а также документы личного происхождения, созданные за рамками процессуальных действий, являются одними из основных видов доказательств в административном (ст. 26.2 КоАП РФ), арбитражном (ст. 75 АПК РФ), гражданском (ст. 71 ГПК РФ) и уголовном процессе (ст. 84 УПК РФ).

Одним из обязательных условий допустимости их использования в процессуальном праве является требование к их достоверности. Недостоверные доказательства – это поддельные документы и документы, не имеющие юридической силы (ст. 16.1 КоАП РФ), а также документы, изготовленные не в соответствии со специально установленными для них требованиями (ст. 75 АПК РФ).

Письменные доказательства и иные документы в административном, арбитражном, гражданском и уголовном процессе могут быть признаны допустимыми только в том случае, если они являются подлинными и обладают юридической силой.

📌 Реклама Отключить

ГОСТ Р 51141-98 определяет «подлинный документ» как «документ, сведения об авторе, времени и месте создания которого, содержащиеся в самом документе или выявленные иным путем, подтверждают достоверность его происхождения». «Юридическая сила документа» — это «свойство официального документа, сообщаемое ему действующим законодательством, компетенцией издавшего его органа и установленным порядком оформления».

ГОСТ Р 6.30-2003 устанавливает обязательным реквизитом текста официального документа дату. Дату наносят на документ по крайней мере один раз. Реквизит «дата» содержит указанное на документе время его создания и/или подписания, утверждения, принятия, согласования, опубликования.

Документы, изданные двумя или более организациями, должны иметь одну (единую) дату. И если дата, указанная в тексте документа, не соответствует действительной (астрономической) дате его создания, то документ, как минимум, должен быть признан не обладающим юридической силой, а в случае умышленного изготовления документа не в дату, указанную в тексте документа, может быть признан поддельным.

📌 Реклама Отключить

Определение времени изготовления документа является одним из способов установления его подлинности/достоверности происхождения или, наоборот, для установления факта его фальсификации.

В подавляющем большинстве случаев документы, созданные юридическими и/или физическими лицами, представляют собой бумажный носитель, на котором рукописным или нерукописными способами нанесены текст, изображения, подписи и оттиски печатей и штампов.

Установление времени изготовления документа сводится к:

  • установлению времени изготовления его носителя (бумаги);
  • установлению давности нанесения его реквизитов.

Методика установления давности изготовления документа

Для установления давности изготовления документа в рамках экспертного исследования могут быть применены две группы методов:

📌 Реклама Отключить

1. Статичный. Установление характеристик (свойств) материалов документов (носителя и красящих веществ, которыми наносили реквизиты) и их сравнение со справочными данными или какими-либо сравнительными образцами, а также установление давности изготовления документа по времени появления технологий и технических средств для изготовления носителей документов и нанесения реквизитов.

2. Динамический. Разделяется на две подгруппы:

  • установлении каких-либо изменений физико-химических свойств материалов документов в процессе хранения и эксплуатации документов с последующим их сравнением с ранее установленными эмпирическими данными;
  • установление изменения физико-химических свойств материалов документов в процессе экспертного исследования.

Вне зависимости от использования первой или второй подгруппы методов установления давности изготовления носителя документа и нанесения реквизитов, необходимо обладать сведениями об изменении физико-химических свойств материалов документов в процессе старения документов. 📌 Реклама Отключить

По ГОСТ 9.710-84 старение – это совокупность физических и химических процессов, происходящих в материале и приводящих к необратимым изменениям его свойств.

О процессах старения документов

Процессы старения можно разделить на естественные и искусственные.

При естественном старении физико-химические свойства материалов документов изменяются без искусственного влияния человека на этот процесс. На это влияют как внутренние, так и внешние факторы. Внутренние факторы обусловлены структурой и составом материалов, а внешние — характеристиками и свойствами внешней среды хранения.

Как правило, естественное старение документов происходит в условиях так называемого темнового сейфового старения, т.е. при отсутствии внешнего светового воздействия, при комнатной температуре (18 — 20 °C), влажности 40 — 60%, отсутствии конвенции воздуха, в стопе других документов.

📌 Реклама Отключить

Процессы, которые могут протекать при старении материалов документов, перечислены в ГОСТ 9.710-84.

Чтобы установить давность изготовления носителя документа или нанесения реквизитов документов красящими веществами, необходимо использовать так называемый характерный показатель старения (маркер старения), по изменению качественно-количественных значений которого во времени можно датировать изготовление документа.

При естественном старении носитель документа (бумага) подвергается необратимым изменениям. Бумага претерпевает изменение химического состава растительных волокон, из которых она изготовлена, а следовательно, и изменение ее механической прочности. Она становится жесткой, хрупкой, изменяет цвет в сторону пожелтения, а в случае глубоких изменений — до коричневого тона различной интенсивности.

📌 Реклама Отключить

На основании закона сохранения вещества, природные и синтетические полимеры, составляющие материальную основу бумаги, постепенно и самопроизвольно распадаются, происходит процесс деполимеризации. Но в условиях естественного старения эти процессы в бумаге происходят довольно медленно и с высокой степенью вариационности в зависимости от типов и состава бумаги.

Например, срок хранения писчей бумаги до ее практически полного разрушения составляет порядка ста лет.

А бумага, из которой изготавливаются денежные билеты Банка России, может сохранять свои свойства практически неизменными до трехсот лет.

В связи с этим, определить абсолютную давность изготовления бумаги по каким-либо характерным показателям старения с высокой степенью точности практически невозможно.

📌 Реклама Отключить

В результате естественного старения материалов письма (чернил, паст, гелей, типографских красок и т.п.) также изменяются их качественно-количественный состав, морфологические или физико-химические свойства.

В частности, происходит так называемое цветовое выцветание, в результате которого с течением времени уменьшается контрастность материалов письма, нанесенных на носителе документа, или изменяется их цветовая гамма.

Цветовое выцветание, как правило, обусловлено разрушением молекул красящих веществ органической природы. Иные компоненты красящих веществ (связующие, наполнители, загустители, пластификаторы, растворители и т.п.) улетучиваются (испаряются), деполимеризуются или происходит их термическое разрушение на более простые вещества. Так, например, глицерин, входящий в состав различных красящих веществ в качестве загустителя, разлагается на акролеин, ацетон и воду.

📌 Реклама Отключить

Параллельно с распадом макромолекул на более мелкие фрагменты обычно протекает и процесс соединения этих фрагментов, называемый «сшивкой», который приводит к изменению химического строения и структуры исходного состава красящих веществ. Таким образом, в процессе естественного старения в материалах письма могут появляться вещества, которые изначально не использовались в их рецептурах.

В материалах письма на первоначальном этапе после нанесения реквизитов процессы изменения физико-химических свойств происходят с относительно высокой скоростью. И эти изменения физико-химических свойств материалов письма могут быть зафиксированы в процессе так называемого автоисследования документа и соответствующим образом интерпретированы, но только для случаев, когда документы хранились в стандартных условиях темнового сейфового хранения. В тех случаях, когда документы подвергались искусственному старению, выводы о давности изготовления могут быть в значительной степени некорректными.

📌 Реклама Отключить

Искусственное старение – это процесс старения документов в условиях, отличающихся в худшую сторону от стандартных условий темнового сейфового хранения.

Так, например, при хранении документа на открытом воздухе и его конвекции увеличивается скорость окислительной деструкции бумаги и красящих веществ. При повышении температуры хранения увеличивается скорость термического разложения. А повышенная влажность ускоряет оба этих процесса.

При одновременном наличии этих трех факторов скорость изменения физико-химических свойств материалов документов многократно возрастает. Проявляется так называемый эффект синергизма — увеличение скорости изменения физико-химических свойств материалов письма при одновременном воздействии на них влаги, температуры и кислорода воздуха.

Искусственное старение может происходить как по естественным (неумышленным), так и по умышленным причинам.

📌 Реклама Отключить

Естественное искусственное старение обусловлено тем, что документ хранился или эксплуатировался в условиях, отличных от стандартных. Так, например, долгое время находился не в стопе других документов, а отдельно и хранился на открытом воздухе при воздействии на него прямого солнечного света. При временном нахождении документов в автомобиле в летнее время они подвергаются воздействию повышенной температуры (до 60 — 70 °C).

В подавляющем большинстве случаев с оспариваемых документов многократно изготавливаются копии с помощью электрофотографических аппаратов или же они неоднократно сканируются с помощью планшетных сканеров. Но при многократном копировании или сканировании документы подвергаются очень интенсивному световому и тепловому воздействию, в результате которых изменяются физико-химические свойства бумаги и красящих веществ. Фактически использование копировальных аппаратов и сканеров для создания копий документов, по сути, является одним из способов неумышленного искусственного старения документов.

📌 Реклама Отключить

Умышленное искусственное старение в подавляющем большинстве случаев применятся в противоправных целях.

Его цель – это целенаправленное старение документов различными способами для того, чтобы эксперты не смогли установить действительные даты нанесения реквизитов документов, или приблизительно состарить документ до возраста, который указан в тексте.

Здесь применяются несколько основных способов: термическое воздействие, облучение светом, интенсивная конвекция воздуха или их комбинация.

Термическое воздействие можно разделить на низкотемпературное (до 100 °C) и высокотемпературное (выше 100 °C).

При низкотемпературном документы умышленно «состаривают» на радиаторах отопления, в духовых шкафах газовых и электрических печей, обдувают теплым воздухом с помощью фенов и т.п. Какие-либо явные признаки низкотемпературного воздействия практически не обнаруживаются.

📌 Реклама Отключить

Высокотемпературное воздействие на документ или его фрагмент осуществляется, как правило, с помощью нагретых до высокой температуры предметов, например, утюга.

Признаки подобного воздействия легко определяются по изменению морфологических свойств поверхности листа бумаги и штрихов реквизитов документов: наблюдается повышенный глянец на участках термического воздействия; может наблюдаться так называемый «вынос» (размазывание) красящего вещества из штрихов за пределы их границы.

При высокотемпературном воздействии в значительной степени изменяются оптические свойства бумаги и особенно характер и интенсивность видимой люминесценции бумаги, возбуждаемой ультрафиолетовым излучением.

Довольно часто, как показывает экспертная практика, документы пытаются состарить путем неоднократного прогона листа через узел закрепления термического тонера копировальных устройств и лазерных принтеров, реализованных на электрофотографическом способе печати. Признаки подобного способа искусственного умышленного старения можно определить следующим образом.

📌 Реклама Отключить

Во-первых, если картридж эксплуатировался длительное время и неоднократно перезаправлялся, то на поверхности листа бумаги наблюдаются многочисленные частицы тонера, количество и плотность которых нехарактерны для однократного прогона листа через бумагоподающий узел копировального устройства и лазерного принтера.

Во-вторых, при прогоне листа через бумагоподающий узел копировального устройства и лазерного принтера в устройстве, называемом «печкой», при температуре 180 — 200 °C происходит спекание частиц тонера и термосиловое закрепление тонера на листе бумаги, происходит повторный разогрев красящих веществ, которыми нанесены реквизиты документов.

При этом красящие вещества на полимерной основе (тонер, паста шариковых ручек) размягчаются (расплавляются) и затем опять застывают. Штрихи теряют глянец, и достаточно часто их фрагменты отрываются от первоначально нанесенных штрихов.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *